Scalar Matrix
A scalar matrix is a special type of square matrix in which all the diagonal elements are equal, and all off-diagonal elements are zero. It is a subset of a diagonal matrix where the diagonal elements are the same scalar value.
Mathematically, a scalar matrix \( S \) of order \( n \) is represented as:
\[ S = k I_n = \begin{bmatrix} k & 0 & 0 & \dots & 0 \\ 0 & k & 0 & \dots & 0 \\ 0 & 0 & k & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & k \end{bmatrix} \]
where:
- \( k \) is a scalar constant.
- \( I_n \) is the identity matrix of order \( n \).
Properties of Scalar Matrices
1. Commutative Property with Square Matrices
A scalar matrix commutes with any square matrix \( A \) of the same order:
\[ S A = A S \]
Example:
Let
\[ S = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]
Multiplying:
\[ S A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} \]
\[ A S = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} \]
Since \( S A = A S \), the property holds.
2. Scalar Multiplication
A scalar matrix can be represented as the product of a scalar \( k \) and the identity matrix:
\[ S = k I_n \]
Example:
For \( k = 4 \) and order \( n = 3 \):
\[ S = 4 I_3 = 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \]
3. Determinant of a Scalar Matrix
The determinant of a scalar matrix of order \( n \) is given by:
\[ \det(S) = k^n \]
Example:
For
\[ S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \]
We compute:
\[ \det(S) = 5^3 = 125 \]
4. Inverse of a Scalar Matrix
If \( k \neq 0 \), the inverse of a scalar matrix is:
\[ S^{-1} = \frac{1}{k} I_n \]
Example:
If
\[ S = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \]
then
\[ S^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \]
5. Eigenvalues of a Scalar Matrix
The eigenvalues of a scalar matrix are equal to the scalar \( k \), repeated \( n \) times.
Example:
If
\[ S = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} \]
The eigenvalues are \( 6, 6, 6 \).
6. Trace of a Scalar Matrix
The trace of a scalar matrix is given by:
\[ \text{Tr}(S) = n \cdot k \]
Example:
If
\[ S = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \]
The trace is:
\[ \text{Tr}(S) = 2 \times 3 = 6 \]