Upper Triangular Matrix

An upper triangular matrix is a square matrix in which all the elements below the main diagonal are zero.

Mathematically, an upper triangular matrix \( U \) of order \( n \times n \) has the form:

\[ U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix} \]

where \( u_{ij} = 0 \) for all \( i > j \).

Properties of Upper Triangular Matrices

1. Determinant of an Upper Triangular Matrix

The determinant of an upper triangular matrix is the product of its diagonal elements:

\[ \det(U) = u_{11} \cdot u_{22} \cdot u_{33} \dots u_{nn} \]

Example

Consider the upper triangular matrix:

\[ U = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 5 & 4 \\ 0 & 0 & 6 \end{bmatrix} \]

The determinant is calculated as:

\[ \det(U) = 2 \times 5 \times 6 = 60 \]

2. Inverse of an Upper Triangular Matrix

The inverse of an upper triangular matrix (if it exists) is also an upper triangular matrix. The matrix is invertible if and only if all diagonal elements are nonzero.

Example

Consider:

\[ U = \begin{bmatrix} 3 & 2 \\ 0 & 4 \end{bmatrix} \]

The inverse is:

\[ U^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{12} \\ 0 & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{6} \\ 0 & \frac{1}{4} \end{bmatrix} \]

3. Sum of Upper Triangular Matrices

The sum of two upper triangular matrices of the same order is also an upper triangular matrix.

Example

\[ U_1 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, U_2 = \begin{bmatrix} 7 & 8 & 9 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} \]

\[ U_1 + U_2 = \begin{bmatrix} 8 & 10 & 12 \\ 0 & 5 & 7 \\ 0 & 0 & 9 \end{bmatrix} \]

4. Multiplication of Upper Triangular Matrices

The product of two upper triangular matrices of the same order is also an upper triangular matrix.

Example

\[ U_1 = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, U_2 = \begin{bmatrix} 4 & 5 \\ 0 & 6 \end{bmatrix} \]

\[ U_1 \times U_2 = \begin{bmatrix} (1 \times 4 + 2 \times 0) & (1 \times 5 + 2 \times 6) \\ (0 \times 4 + 3 \times 0) & (0 \times 5 + 3 \times 6) \end{bmatrix} \]

\[ = \begin{bmatrix} 4 & 17 \\ 0 & 18 \end{bmatrix} \]

5. Eigenvalues of an Upper Triangular Matrix

The eigenvalues of an upper triangular matrix are simply the elements on its main diagonal.

Example

For the matrix:

\[ U = \begin{bmatrix} 7 & 1 & 2 \\ 0 & 5 & 3 \\ 0 & 0 & 9 \end{bmatrix} \]

The eigenvalues are \( 7, 5, 9 \).