Zero Matrix
A zero matrix (also known as a null matrix) is a matrix in which all elements are zero. It is denoted by \( O \) and can be of any size \( m \times n \).
Mathematically, a zero matrix of order \( m \times n \) is represented as:
\[ O_{m \times n} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \]
For example:
- A \( 2 \times 2 \) zero matrix: \[ O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
- A \( 3 \times 3 \) zero matrix: \[ O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
Properties of Zero Matrix
1. Additive Identity Property
The zero matrix acts as the additive identity in matrix addition. Adding a zero matrix to any matrix \( A \) of the same order does not change \( A \).
\[ A + O = O + A = A \]
Example:
Given:
\[ A = \begin{bmatrix} 5 & -3 \\ 2 & 7 \end{bmatrix}, \quad O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
\[ A + O = \begin{bmatrix} 5 & -3 \\ 2 & 7 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ 2 & 7 \end{bmatrix} \]
2. Multiplication by a Scalar
Multiplying the zero matrix by any scalar \( k \) results in another zero matrix:
\[ kO = O \]
Example:
Let:
\[ O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad k = 3 \]
\[ 3O = 3 \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
3. Multiplicative Property
Multiplying any matrix \( A \) by a zero matrix of appropriate dimensions results in a zero matrix.
- If \( A \) is an \( m \times n \) matrix and \( O \) is an \( n \times p \) zero matrix, then: \[ A \cdot O = O_{m \times p} \]
- Similarly, if \( O \) is an \( m \times n \) zero matrix, and \( B \) is an \( n \times p \) matrix, then: \[ O \cdot B = O_{m \times p} \]
Example:
Let:
\[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
\[ A \cdot O = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
4. Determinant of a Zero Matrix
The determinant of a square zero matrix of order \( n \) is always zero.
\[ \det(O) = 0 \]
Example:
For a \( 2 \times 2 \) zero matrix:
\[ O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
The determinant is:
\[ \det(O) = (0 \times 0) – (0 \times 0) = 0 \]
5. Zero Matrix and Inverse
The zero matrix has no inverse because its determinant is always zero, making it a singular matrix.
\[ O^{-1} \text{ does not exist} \]
Example:
For the \( 3 \times 3 \) zero matrix:
\[ O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
Since \( \det(O) = 0 \), the matrix is non-invertible.
6. Zero Matrix in Linear Equations
If a system of linear equations has a coefficient matrix that is a zero matrix, then the equations reduce to:
\[ 0x + 0y + 0z = 0 \]
which always holds true, but does not provide any useful information about the variables.
Example:
Consider the system:
\[ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
This results in trivial solutions but does not provide unique values for \( x \) and \( y \).