NumPy absolute()
The numpy.absolute()
function computes the absolute value of each element in an input array.
It works element-wise, making all values non-negative.
Syntax
</>
Copy
numpy.absolute(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input array containing numeric values (real or complex). |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the absolute function. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the absolute values of the input array elements. If the input is a scalar, a scalar is returned.
Examples
1. Computing Absolute Values of an Array
Here, we compute the absolute values of elements in an array containing both positive and negative numbers.
</>
Copy
import numpy as np
# Define an array with positive and negative values
arr = np.array([-5, -3, 0, 3, 5])
# Compute the absolute values
result = np.absolute(arr)
# Print the result
print("Original array:", arr)
print("Absolute values:", result)
Output:
Original array: [-5 -3 0 3 5]
Absolute values: [5 3 0 3 5]

2. Computing Absolute Values for Complex Numbers
For complex numbers, the absolute value returns the magnitude of each complex number.
</>
Copy
import numpy as np
# Define an array of complex numbers
complex_arr = np.array([3 + 4j, -1 - 2j, 0 + 1j])
# Compute the absolute values (magnitudes)
result = np.absolute(complex_arr)
# Print the results
print("Original complex numbers:", complex_arr)
print("Magnitudes:", result)
Output:
Original complex numbers: [ 3.+4.j -1.-2.j 0.+1.j]
Magnitudes: [5. 2.23606798 1.]

3. Using the out
Parameter
Using an output array to store results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array with negative values
arr = np.array([-7, -2, 4, -1])
# Create an output array with the same shape
output_array = np.empty_like(arr)
# Compute absolute values and store them in output_array
np.absolute(arr, out=output_array)
# Print the results
print("Computed absolute values:", output_array)
Output:
Computed absolute values: [7 2 4 1]

4. Using the where
Parameter
Using a condition to compute absolute values only for selected elements.
</>
Copy
import numpy as np
# Define an array with positive and negative values
arr = np.array([-6, -4, 2, -8])
# Define a mask (compute absolute only where mask is True)
mask = np.array([True, False, True, False])
# Compute absolute values where mask is True
result = np.absolute(arr, where=mask)
# Print the results
print("Computed absolute values with mask:", result)
Output:
Computed absolute values with mask: [6 0 2 0]

The absolute values are computed only for elements where mask=True
. The other values remain unchanged.