NumPy add()

The numpy.add() function performs element-wise addition of two input arrays. If the arrays have different shapes, they must be broadcastable to a common shape.

Syntax

</>
Copy
numpy.add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)

Parameters

ParameterTypeDescription
x1, x2array_likeInput arrays to be added. They must have the same shape or be broadcastable.
outndarray, None, or tuple of ndarray and None, optionalOptional output array where the result is stored. If None, a new array is created.
wherearray_like, optionalBoolean mask specifying which elements to compute. Elements where where=False retain their original value.
castingstr, optionalDefines the casting behavior when computing the addition.
orderstr, optionalMemory layout order of the output array.
dtypedata-type, optionalDefines the data type of the output array.
subokbool, optionalDetermines if subclasses of ndarray are preserved in the output.

Return Value

Returns an array with the element-wise sum of x1 and x2. If both inputs are scalars, a scalar is returned.


Examples

1. Adding Two Scalars

Adding two scalar values using numpy.add().

</>
Copy
import numpy as np

# Define two scalar values
x1 = 10
x2 = 5

# Perform element-wise addition
result = np.add(x1, x2)

# Print the result
print("Sum of scalars:", result)

Output:

Sum of scalars: 15

2. Adding Two Arrays Element-Wise

Adding two arrays of the same shape element-wise.

</>
Copy
import numpy as np

# Define two arrays
x1 = np.array([1, 2, 3, 4])
x2 = np.array([5, 6, 7, 8])

# Perform element-wise addition
result = np.add(x1, x2)

# Print the results
print("Array 1:", x1)
print("Array 2:", x2)
print("Sum of arrays:", result)

Output:

Array 1: [1 2 3 4]
Array 2: [5 6 7 8]
Sum of arrays: [ 6  8 10 12]

3. Adding Arrays with Broadcasting

Adding a 1D array to a 2D array using broadcasting.

</>
Copy
import numpy as np

# Define a 2D array and a 1D array
x1 = np.array([[1, 2, 3], [4, 5, 6]])
x2 = np.array([10, 20, 30])  # Broadcasted to match x1

# Perform element-wise addition
result = np.add(x1, x2)

# Print the results
print("2D Array:\n", x1)
print("1D Array:", x2)
print("Sum with broadcasting:\n", result)

Output:

2D Array:
 [[1 2 3]
 [4 5 6]]
1D Array: [10 20 30]
Sum with broadcasting:
 [[11 22 33]
 [14 25 36]]

4. Using the out Parameter

Storing the addition result in an existing array.

</>
Copy
import numpy as np

# Define two arrays
x1 = np.array([1, 2, 3, 4])
x2 = np.array([10, 20, 30, 40])

# Create an output array with the same shape
output_array = np.empty_like(x1)

# Perform addition and store in output_array
np.add(x1, x2, out=output_array)

# Print the result
print("Output array after addition:", output_array)

Output:

Output array after addition: [11 22 33 44]

5. Using the where Parameter

Performing addition only at selected positions using a boolean mask.

</>
Copy
import numpy as np

# Define two arrays
x1 = np.array([1, 2, 3, 4])
x2 = np.array([10, 20, 30, 40])

# Define a mask (perform addition only where mask is True)
mask = np.array([True, False, True, False])

# Perform addition with condition
result = np.add(x1, x2, where=mask)

# Print the result
print("Result with where condition:", result)

Output:

Result with where condition: [11  2 33  4]

Elements where mask=False retain their original values from x1.