NumPy add()
The numpy.add()
function performs element-wise addition of two input arrays. If the arrays have different shapes, they must be broadcastable to a common shape.
Syntax
</>
Copy
numpy.add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x1, x2 | array_like | Input arrays to be added. They must have the same shape or be broadcastable. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the addition. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the element-wise sum of x1
and x2
. If both inputs are scalars, a scalar is returned.
Examples
1. Adding Two Scalars
Adding two scalar values using numpy.add()
.
</>
Copy
import numpy as np
# Define two scalar values
x1 = 10
x2 = 5
# Perform element-wise addition
result = np.add(x1, x2)
# Print the result
print("Sum of scalars:", result)
Output:
Sum of scalars: 15

2. Adding Two Arrays Element-Wise
Adding two arrays of the same shape element-wise.
</>
Copy
import numpy as np
# Define two arrays
x1 = np.array([1, 2, 3, 4])
x2 = np.array([5, 6, 7, 8])
# Perform element-wise addition
result = np.add(x1, x2)
# Print the results
print("Array 1:", x1)
print("Array 2:", x2)
print("Sum of arrays:", result)
Output:
Array 1: [1 2 3 4]
Array 2: [5 6 7 8]
Sum of arrays: [ 6 8 10 12]

3. Adding Arrays with Broadcasting
Adding a 1D array to a 2D array using broadcasting.
</>
Copy
import numpy as np
# Define a 2D array and a 1D array
x1 = np.array([[1, 2, 3], [4, 5, 6]])
x2 = np.array([10, 20, 30]) # Broadcasted to match x1
# Perform element-wise addition
result = np.add(x1, x2)
# Print the results
print("2D Array:\n", x1)
print("1D Array:", x2)
print("Sum with broadcasting:\n", result)
Output:
2D Array:
[[1 2 3]
[4 5 6]]
1D Array: [10 20 30]
Sum with broadcasting:
[[11 22 33]
[14 25 36]]

4. Using the out
Parameter
Storing the addition result in an existing array.
</>
Copy
import numpy as np
# Define two arrays
x1 = np.array([1, 2, 3, 4])
x2 = np.array([10, 20, 30, 40])
# Create an output array with the same shape
output_array = np.empty_like(x1)
# Perform addition and store in output_array
np.add(x1, x2, out=output_array)
# Print the result
print("Output array after addition:", output_array)
Output:
Output array after addition: [11 22 33 44]

5. Using the where
Parameter
Performing addition only at selected positions using a boolean mask.
</>
Copy
import numpy as np
# Define two arrays
x1 = np.array([1, 2, 3, 4])
x2 = np.array([10, 20, 30, 40])
# Define a mask (perform addition only where mask is True)
mask = np.array([True, False, True, False])
# Perform addition with condition
result = np.add(x1, x2, where=mask)
# Print the result
print("Result with where condition:", result)
Output:
Result with where condition: [11 2 33 4]

Elements where mask=False
retain their original values from x1
.