NumPy arcsinh()
The numpy.arcsinh()
function computes the inverse hyperbolic sine (also known as the area hyperbolic sine) of each element in an input array.
Syntax
</>
Copy
numpy.arcsinh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input array containing values for which the inverse hyperbolic sine is computed. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the function. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the inverse hyperbolic sine values of the input elements. If the input is a scalar, a scalar is returned.
Examples
1. Computing arcsinh of a Single Value
Here, we compute the inverse hyperbolic sine of a single value.
</>
Copy
import numpy as np
# Define a single value
value = 1.0
# Compute the inverse hyperbolic sine of the value
result = np.arcsinh(value)
# Print the result
print("arcsinh(1.0):", result)
Output:
arcsinh(1.0): 0.881373587019543

2. Computing arcsinh for an Array of Values
We compute the inverse hyperbolic sine for an array of values.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([-2, -1, 0, 1, 2])
# Compute the inverse hyperbolic sine for each value
arcsinh_values = np.arcsinh(values)
# Print the results
print("Input values:", values)
print("arcsinh values:", arcsinh_values)
Output:
Input values: [-2 -1 0 1 2]
arcsinh values: [-1.44363548 -0.88137359 0. 0.88137359 1.44363548]

3. Using the out
Parameter
Using an output array to store results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([-1, 0, 1])
# Create an output array with the same shape
output_array = np.ndarray(values.shape)
# Compute inverse hyperbolic sine and store the result in output_array
np.arcsinh(values, out=output_array)
# Print the results
print("Computed arcsinh values:", output_array)
Output:
Computed arcsinh values: [-0.88137359 0. 0.88137359]

4. Using the where
Parameter
Using a condition to compute the inverse hyperbolic sine only for selected elements.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([-2, -1, 0, 1, 2])
# Define a mask (compute arcsinh only where mask is True)
mask = np.array([True, False, True, False, True])
# Compute inverse hyperbolic sine where mask is True
result = np.arcsinh(values, where=mask)
# Print the results
print("Computed arcsinh values with mask:", result)
Output:
Computed arcsinh values with mask: [-1.44363548e+000 0.00000000e+000 0.00000000e+000 4.95242130e+223
1.44363548e+000]

The arcsinh values are computed only for elements where mask=True
. The other values remain unchanged.