NumPy ceil()
The numpy.ceil()
function returns the ceiling value of each element in an input array.
The ceiling of a number is the smallest integer greater than or equal to that number.
Syntax
</>
Copy
numpy.ceil(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input array containing numerical values. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the ceiling function. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the ceiling values of the input elements. If the input is a scalar, a scalar is returned.
Examples
1. Computing the Ceiling of a Single Value
Here, we compute the ceiling of a single floating-point number.
</>
Copy
import numpy as np
# Define a floating-point number
num = 3.7
# Compute the ceiling of the number
result = np.ceil(num)
# Print the result
print("Ceiling of 3.7:", result)
Output:
Ceiling of 3.7: 4.0

2. Computing the Ceiling for an Array
We compute the ceiling values for multiple floating-point numbers in an array.
</>
Copy
import numpy as np
# Define an array of floating-point numbers
arr = np.array([1.2, 2.8, -3.5, 4.0, -0.9])
# Compute the ceiling of each element
ceil_values = np.ceil(arr)
# Print the results
print("Input array:", arr)
print("Ceiling values:", ceil_values)
Output:
Input array: [ 1.2 2.8 -3.5 4. -0.9]
Ceiling values: [ 2. 3. -3. 4. 0.]

3. Using the out
Parameter
Using an output array to store results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array of floating-point numbers
arr = np.array([2.1, -4.7, 5.5, 0.3])
# Create an output array with the same shape
output_array = np.empty_like(arr)
# Compute ceiling values and store in output_array
np.ceil(arr, out=output_array)
# Print the results
print("Ceiling values stored in output array:", output_array)
Output:
Ceiling values stored in output array: [ 3. -4. 6. 1.]

4. Using the where
Parameter
Using a condition to compute the ceiling only for selected elements.
</>
Copy
import numpy as np
# Define an array of floating-point numbers
arr = np.array([1.4, -2.9, 3.6, -1.2])
# Define a mask (compute ceiling only where mask is True)
mask = np.array([True, False, True, False])
# Compute ceiling values where mask is True
result = np.ceil(arr, where=mask)
# Print the results
print("Ceiling values with mask applied:", result)
Output:
Ceiling values with mask applied: [2. 0. 4. 0.]

The ceiling values are computed only for elements where mask=True
. The other values remain unchanged.