NumPy cosh()
The numpy.cosh()
function computes the hyperbolic cosine of each element in an input array. It is equivalent to \( \dfrac{e^x + e^{-x}}{2} \) and can also be expressed using the complex cosine function as \( \cosh(x) = \cos(1j \cdot x) \).
Syntax
numpy.cosh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input values for which to compute the hyperbolic cosine. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array to store the result. If None, a new array is created. |
where | array_like, optional | Boolean mask that determines which elements should be computed. Other elements retain their original values. |
casting | str, optional | Defines the casting behavior when computing the hyperbolic cosine function. |
order | str, optional | Specifies the memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the hyperbolic cosine values of the input array elements. If the input is a scalar, a scalar is returned.
Examples
1. Computing Hyperbolic Cosine of a Single Value
Here, we compute the hyperbolic cosine of a single input value.
import numpy as np
# Define a single input value
x = 0
# Compute the hyperbolic cosine
result = np.cosh(x)
# Print the result
print("cosh(0):", result)
Output:
cosh(0): 1.0

2. Computing Hyperbolic Cosine for an Array of Values
We compute the hyperbolic cosine values for multiple elements in an array.
import numpy as np
# Define an array of values
values = np.array([-2, -1, 0, 1, 2])
# Compute the hyperbolic cosine for each value
cosh_values = np.cosh(values)
# Print the results
print("Input values:", values)
print("Hyperbolic cosine values:", cosh_values)
Output:
Input values: [-2 -1 0 1 2]
Hyperbolic cosine values: [3.76219569 1.54308063 1. 1.54308063 3.76219569]

3. Using the out
Parameter
Using an output array to store the results instead of creating a new array.
import numpy as np
# Define an array of input values
values = np.array([-1, 0, 1])
# Create an output array with the same shape
output_array = np.ndarray(values.shape)
# Compute hyperbolic cosine and store the result in output_array
np.cosh(values, out=output_array)
# Print the results
print("Computed hyperbolic cosine values:", output_array)
Output:
Computed hyperbolic cosine values: [1.54308063 1. 1.54308063]

4. Using the where
Parameter
Using a condition to compute hyperbolic cosine only for selected elements.
import numpy as np
# Define an array of input values
values = np.array([-2, -1, 0, 1, 2])
# Define a mask (compute cosh only where mask is True)
mask = np.array([True, False, True, False, True])
# Compute hyperbolic cosine values where mask is True
result = np.cosh(values, where=mask)
# Print the results
print("Computed hyperbolic cosine values with mask:", result)
Output:
Computed hyperbolic cosine values with mask: [3.76219569 0.5 1. 1.5 3.76219569]

The hyperbolic cosine values are computed only for elements where mask=True
. The other values remain unchanged.