NumPy exp()
The numpy.exp()
function calculates the exponential of all elements in the input array. It computes e
raised to the power of each element in the input array, where e
is Euler’s number, approximately equal to 2.718.
Syntax
</>
Copy
numpy.exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input values. Exponential is calculated for each element. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the exponential. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the exponential of each input element. If the input is a scalar, a scalar is returned.
Examples
1. Calculating the Exponential of a Single Value
In this example, we calculate the exponential of a single numeric value.
</>
Copy
import numpy as np
# Define a single value
value = 1
# Calculate the exponential of the value
result = np.exp(value)
# Print the result
print("Exponential of 1:", result)
Output:
Exponential of 1: 2.718281828459045

2. Calculating Exponential for an Array
Here, we calculate the exponential values for an array of numbers.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([0, 1, 2, 3])
# Calculate the exponential of each value in the array
exp_values = np.exp(values)
# Print the results
print("Input values:", values)
print("Exponential values:", exp_values)
Output:
Input values: [0 1 2 3]
Exponential values: [ 1. 2.71828183 7.3890561 20.08553692]

3. Using the out
Parameter
Utilizing an output array to store the results instead of creating a new one.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([0, 0.5, 1.5])
# Create an output array with the same shape
output_array = np.empty_like(values)
# Calculate exponential and store in output_array
np.exp(values, out=output_array)
# Print the results
print("Exponential values stored in output array:", output_array)
Output:
Exponential values stored in output array: [1. 1.64872127 4.48168907]

4. Using the where
Parameter
Using a condition to calculate the exponential only for selected elements.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([0, 1, 2, 3])
# Define a mask (calculate exponential only where mask is True)
mask = np.array([True, False, True, False])
# Calculate exponential values where mask is True
result = np.exp(values, where=mask)
# Print the results
print("Exponential values with mask applied:", result)
Output:
Exponential values with mask applied: [1. 0. 7.3890561 0. ]

Here, the exponential calculation occurs only at positions where mask=True
. The other positions retain their original value.