NumPy log10()

The numpy.log10() function computes the base-10 logarithm of each element in the input array, element-wise.

Syntax

</>
Copy
numpy.log10(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)

Parameters

ParameterTypeDescription
xarray_likeInput values for which base-10 logarithm is computed.
outndarray, None, or tuple of ndarray and None, optionalOptional output array to store the results. If None, a new array is created.
wherearray_like, optionalBoolean mask specifying which elements to compute. Elements where where=False retain their original value.
castingstr, optionalDefines the casting behavior when computing the function.
orderstr, optionalMemory layout order of the output array.
dtypedata-type, optionalDefines the data type of the output array.
subokbool, optionalDetermines if subclasses of ndarray are preserved in the output.

Return Value

Returns an array with the base-10 logarithm values of the input elements. If the input is a scalar, a scalar is returned. If x contains negative values, NaN is returned for those elements.


Examples

1. Computing Log Base 10 of a Single Value

Here, we compute the base-10 logarithm of a single number.

</>
Copy
import numpy as np

# Define a single value
value = 1000  

# Compute the base-10 logarithm
result = np.log10(value)

# Print the result
print("log10 of 1000:", result)

Output:

log10 of 1000: 3.0
Computing NumPy log10 of a single value

2. Computing Log Base 10 for an Array

We compute the log base 10 for multiple values in an array.

</>
Copy
import numpy as np

# Define an array of values
values = np.array([1, 10, 100, 1000, 10000])

# Compute the base-10 logarithm for each element
log_values = np.log10(values)

# Print the results
print("Input values:", values)
print("Base-10 logarithm:", log_values)

Output:

Input values: [    1    10   100  1000 10000]
Base-10 logarithm: [0. 1. 2. 3. 4.]

3. Using the out Parameter

Using an output array to store results instead of creating a new array.

</>
Copy
import numpy as np

# Define an array of values
values = np.array([1, 10, 100, 1000])

# Create an output array with the same shape
output_array = np.empty_like(values, dtype=np.float64)

# Compute log10 and store the result in output_array
np.log10(values, out=output_array)

# Print the results
print("Computed log10 values:", output_array)

Output:

Computed log10 values: [0. 1. 2. 3.]

4. Handling Negative Values

If the input array contains negative values, the result will contain NaN values.

</>
Copy
import numpy as np

# Define an array with negative values
values = np.array([10, -5, 100, -20])

# Compute the base-10 logarithm
log_values = np.log10(values)

# Print the results
print("Computed log10 values:", log_values)

Output:

Computed log10 values: [ 1. nan  2. nan]

5. Using the where Parameter

The where parameter allows selective computation for elements that meet a condition.

</>
Copy
import numpy as np

# Define an array of values
values = np.array([10, -5, 100, 1000])

# Define a mask (compute log only for positive values)
mask = values > 0

# Compute log10 values where mask is True
result = np.log10(values, where=mask)

# Print the results
print("Computed log10 values with mask:", result)

Output:

Computed log10 values with mask: [ 1.  0.  2.  3.]

The logarithm is computed only for positive values, and negative values remain unchanged.