NumPy ndarray.dtype
The dtype
attribute of a NumPy ndarray
object returns the data type of the array’s elements.
It provides information about the type of data stored in the array, such as integers, floats, or custom-defined types.
Syntax
ndarray.dtype
Return Value
Returns a numpy.dtype
object, which describes the type of data stored in the array. It includes information about the data type, byte order, and size.
Examples
1. Checking the Data Type of an Array
In this example, we create an integer array and check its data type using the dtype
attribute.
import numpy as np
# Creating a NumPy array with integer values
arr = np.array([1, 2, 3, 4, 5])
# Checking the data type of the array elements
print(arr.dtype) # Output: int64 (or int32 depending on the system)
Output:
int64
The output shows that the array elements are stored as 64-bit integers.
2. Checking the Data Type of a Floating-Point Array
Here, we create a floating-point array and check its data type.
import numpy as np
# Creating a NumPy array with floating-point values
arr = np.array([1.5, 2.7, 3.8, 4.2])
# Checking the data type of the array elements
print(arr.dtype) # Output: float64
Output:
float64
Since the elements are decimal numbers, NumPy assigns them the float64
data type by default.
3. Creating an Array with a Specific Data Type
We can explicitly specify the data type of a NumPy array using the dtype
parameter.
import numpy as np
# Creating an array with integers but specifying dtype as float
arr = np.array([1, 2, 3, 4], dtype=np.float32)
# Checking the data type
print(arr.dtype) # Output: float32
Output:
float32
Even though the values are integers, they are stored as 32-bit floating-point numbers due to the specified dtype
.
4. Checking Data Type of a Boolean Array
Boolean arrays store elements as bool
type.
import numpy as np
# Creating a boolean NumPy array
arr = np.array([True, False, True])
# Checking the data type
print(arr.dtype) # Output: bool
Output:
bool
Since the array contains boolean values, NumPy assigns them the bool
data type.
5. Checking Data Type of a String Array
NumPy stores string data using the U
(Unicode) type with a fixed length.
import numpy as np
# Creating a NumPy array with string elements
arr = np.array(["apple", "banana", "cherry"])
# Checking the data type
print(arr.dtype) # Output: <U6 (or similar based on longest string length)
Output:
<U6
The <U6
output means that the array elements are Unicode strings with a maximum length of 6 characters.