NumPy ndarray.ndim
The ndarray.ndim
attribute in NumPy returns the number of dimensions (axes) of an array.
It helps determine whether an array is 1D, 2D, 3D, or higher-dimensional.
Syntax
ndarray.ndim
Attribute Details
Attribute | Type | Description |
---|---|---|
ndim | int | Returns the number of dimensions (axes) of the array. |
Return Value
The ndim
attribute returns an integer representing the number of dimensions in the array.
Examples
1. Checking Dimensions of Different Arrays
Let’s create and check the number of dimensions for different arrays.
import numpy as np
# Creating a 1D array
arr_1d = np.array([1, 2, 3, 4, 5])
print("1D array dimensions:", arr_1d.ndim)
# Creating a 2D array
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
print("2D array dimensions:", arr_2d.ndim)
# Creating a 3D array
arr_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print("3D array dimensions:", arr_3d.ndim)
Output:
1D array dimensions: 1
2D array dimensions: 2
3D array dimensions: 3
The ndim
attribute correctly identifies the number of dimensions in each array.
2. Checking Dimensions of Higher-Dimensional Arrays
Let’s create and check dimensions of a 4D and a 5D array.
import numpy as np
# Creating a 4D array
arr_4d = np.random.rand(2, 2, 2, 2) # Random 4D array with shape (2,2,2,2)
print("4D array dimensions:", arr_4d.ndim)
# Creating a 5D array
arr_5d = np.random.rand(2, 2, 2, 2, 2) # Random 5D array with shape (2,2,2,2,2)
print("5D array dimensions:", arr_5d.ndim)
Output:
4D array dimensions: 4
5D array dimensions: 5
The ndim
attribute correctly returns the number of dimensions for higher-dimensional arrays as well.
3. Checking Dimensions of an Empty Array
Even an empty array has a dimension value.
import numpy as np
# Creating an empty array
empty_arr = np.array([])
print("Empty array dimensions:", empty_arr.ndim)
Output:
Empty array dimensions: 1
An empty array in NumPy is considered a 1D array, even though it contains no elements.
4. Using ndim
on a Scalar
A NumPy scalar has zero dimensions.
import numpy as np
# Creating a scalar (0D array)
scalar = np.array(42)
print("Scalar dimensions:", scalar.ndim)
Output:
Scalar dimensions: 0
A scalar is considered a zero-dimensional array in NumPy.