NumPy negative()
The numpy.negative()
function computes the numerical negative of each element in an input array.
It returns an array with the negated values of the input.
Syntax
</>
Copy
numpy.negative(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like or scalar | Input array whose elements will be negated. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to negate. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the negative function. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the negated values of the input array elements. If the input is a scalar, a scalar is returned.
Examples
1. Negating a Single Value
Here, we compute the negative of a single scalar value.
</>
Copy
import numpy as np
# Define a single value
value = 5
# Compute the negative value
result = np.negative(value)
# Print the result
print("Negative of 5:", result)
Output:
Negative of 5: -5

2. Negating an Array of Values
We compute the negative values for multiple numbers stored in an array.
</>
Copy
import numpy as np
# Define an array of numbers
numbers = np.array([1, -3, 5, -7, 9])
# Compute the negative of each element
negative_values = np.negative(numbers)
# Print the results
print("Original numbers:", numbers)
print("Negated numbers:", negative_values)
Output:
Original numbers: [ 1 -3 5 -7 9]
Negated numbers: [ -1 3 -5 7 -9]

3. Using the out
Parameter
Using an output array to store results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array of numbers
numbers = np.array([2, -4, 6, -8, 10])
# Create an output array with the same shape
output_array = np.empty_like(numbers)
# Compute the negative values and store them in output_array
np.negative(numbers, out=output_array)
# Print the results
print("Negated numbers stored in output array:", output_array)
Output:
Negated numbers stored in output array: [ -2 4 -6 8 -10]

4. Using the where
Parameter
Using a condition to negate only selected elements.
</>
Copy
import numpy as np
# Define an array of numbers
numbers = np.array([1, -2, 3, -4, 5])
# Define a mask (negate only where mask is True)
mask = np.array([True, False, True, False, True])
# Compute negative values where mask is True
result = np.negative(numbers, where=mask)
# Print the results
print("Negated numbers with mask:", result)
Output:
Negated numbers with mask: [ -1 4602678819172646912 -3
4609434218613702656 -5]

The negation is applied only to elements where mask=True
. The other values remain unchanged.