NumPy reciprocal()
The numpy.reciprocal()
function calculates the reciprocal (1/x) of each element in an input array, element-wise.
Syntax
</>
Copy
numpy.reciprocal(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input array for which the reciprocal is calculated. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the reciprocal. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the reciprocal values of the input array elements. If the input is a scalar, a scalar is returned.
Examples
1. Computing the Reciprocal of a Single Value
Here, we compute the reciprocal of a single number.
</>
Copy
import numpy as np
# Define a single number
value = 4
# Compute the reciprocal
result = np.reciprocal(value)
# Print the result
print("Reciprocal of", value, ":", result)
Output:
Reciprocal of 4 : 0

Since NumPy performs integer division for integer inputs, the reciprocal of 4
results in 0
. Use floating-point numbers for precise results.
2. Computing Reciprocal for an Array of Values
To get accurate results, we use an array of floating-point numbers.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([1.0, 2.0, 4.0, 0.5])
# Compute the reciprocal of each element
reciprocal_values = np.reciprocal(values)
# Print the results
print("Original values:", values)
print("Reciprocal values:", reciprocal_values)
Output:
Original values: [1. 2. 4. 0.5]
Reciprocal values: [1. 0.5 0.25 2. ]

3. Using the out
Parameter
Using an output array to store results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([1.0, 2.0, 3.0])
# Create an output array with the same shape
output_array = np.empty_like(values)
# Compute reciprocal and store the result in output_array
np.reciprocal(values, out=output_array)
# Print the results
print("Computed reciprocal values:", output_array)
Output:
Computed reciprocal values: [1. 0.5 0.33333333]

4. Using the where
Parameter
Using a condition to compute the reciprocal only for selected elements.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([1.0, 2.0, 4.0, 0.5])
# Define a mask (compute reciprocal only where mask is True)
mask = np.array([True, False, True, False])
# Compute reciprocal values where mask is True
result = np.reciprocal(values, where=mask)
# Print the results
print("Computed reciprocal values with mask:", result)
Output:
Computed reciprocal values with mask: [1. 2. 0.25 0.5]

The reciprocal values are computed only for elements where mask=True
. The other values remain unchanged.