NumPy rint()
The numpy.rint()
function rounds each element in an input array to the nearest integer while maintaining the original data type.
Syntax
</>
Copy
numpy.rint(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input array containing floating-point numbers. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array to store the results. If None , a new array is created. |
where | array_like, optional | Boolean mask that specifies where rounding should be applied. |
casting | str, optional | Defines the casting behavior when computing the function. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Specifies the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with elements rounded to the nearest integer. If the input is a scalar, a scalar is returned.
Examples
1. Rounding a Single Floating-Point Number
This example demonstrates how numpy.rint()
rounds a single number to the nearest integer.
</>
Copy
import numpy as np
# Define a floating-point number
num = 3.6
# Compute the rounded value
rounded_value = np.rint(num)
# Print the result
print("Rounded value:", rounded_value)
Output:
Rounded value: 4.0

2. Rounding an Array of Floating-Point Numbers
We apply numpy.rint()
to an array of floating-point numbers to round each element to the nearest integer.
</>
Copy
import numpy as np
# Define an array of floating-point numbers
arr = np.array([1.2, 2.5, 3.7, -1.8, -2.3])
# Compute the rounded values
rounded_array = np.rint(arr)
# Print the results
print("Original array:", arr)
print("Rounded array:", rounded_array)
Output:
Original array: [ 1.2 2.5 3.7 -1.8 -2.3]
Rounded array: [ 1. 2. 4. -2. -2.]

3. Using the out
Parameter
Using an output array to store the results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array of floating-point numbers
arr = np.array([0.4, 1.9, 2.2, -3.5])
# Create an empty output array
output_array = np.empty_like(arr)
# Compute the rounded values and store in output_array
np.rint(arr, out=output_array)
# Print the results
print("Rounded values:", output_array)
Output:
Rounded values: [ 0. 2. 2. -4.]

4. Using the where
Parameter
Using a condition to apply rounding only to selected elements.
</>
Copy
import numpy as np
# Define an array of floating-point numbers
arr = np.array([1.1, 2.6, 3.3, 4.7])
# Define a condition (only round numbers greater than 3)
mask = arr > 3
# Compute the rounded values where the condition is met
result = np.rint(arr, where=mask)
# Print the results
print("Rounded values with condition:", result)
Output:
Rounded values with condition: [0. 0. 3. 5.]

The function rounds only elements greater than 3.