NumPy sinh()
The numpy.sinh()
function computes the hyperbolic sine of each element in an input array.
Syntax
</>
Copy
numpy.sinh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Parameter | Type | Description |
---|---|---|
x | array_like | Input array. Each element will have its hyperbolic sine computed. |
out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. |
where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=False retain their original value. |
casting | str, optional | Defines the casting behavior when computing the hyperbolic sine function. |
order | str, optional | Memory layout order of the output array. |
dtype | data-type, optional | Defines the data type of the output array. |
subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. |
Return Value
Returns an array with the hyperbolic sine values of the input array elements. If the input is a scalar, a scalar is returned.
Examples
1. Computing Hyperbolic Sine of a Single Value
Here, we compute the hyperbolic sine of a single value.
</>
Copy
import numpy as np
# Define a single input value
x = 1.0
# Compute the hyperbolic sine of the value
result = np.sinh(x)
# Print the result
print("sinh(1.0):", result)
Output:
sinh(1.0): 1.1752011936438014

2. Computing Hyperbolic Sine for an Array of Values
We compute the hyperbolic sine values for multiple inputs provided in an array.
</>
Copy
import numpy as np
# Define an array of input values
values = np.array([-2, -1, 0, 1, 2])
# Compute the hyperbolic sine of each value
sinh_values = np.sinh(values)
# Print the results
print("Input values:", values)
print("Hyperbolic sine values:", sinh_values)
Output:
Input values: [-2 -1 0 1 2]
Hyperbolic sine values: [-3.62686041 -1.17520119 0. 1.17520119 3.62686041]

3. Using the out
Parameter
Using an output array to store results instead of creating a new array.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([-1, 0, 1])
# Create an output array with the same shape
output_array = np.ndarray(values.shape)
# Compute hyperbolic sine and store the result in output_array
np.sinh(values, out=output_array)
# Print the results
print("Computed hyperbolic sine values:", output_array)
Output:
Computed hyperbolic sine values: [-1.17520119 0. 1.17520119]

4. Using the where
Parameter
Using a condition to compute hyperbolic sine only for selected elements.
</>
Copy
import numpy as np
# Define an array of values
values = np.array([-2, -1, 0, 1, 2])
# Define a mask (compute sinh only where mask is True)
mask = np.array([True, False, True, False, True])
# Compute hyperbolic sine values where mask is True
result = np.sinh(values, where=mask)
# Print the results
print("Computed hyperbolic sine values with mask:", result)
Output:
Computed hyperbolic sine values with mask: [-3.62686041 0.5 0. 1.5 3.62686041]

The hyperbolic sine values are computed only for elements where mask=True
. The other values remain unchanged.