NumPy strings.less_equal()

The numpy.strings.less_equal() function compares two string arrays element-wise and returns a boolean array indicating whether each element in x1 is less than or equal to the corresponding element in x2.

Syntax

</>
Copy
numpy.strings.less_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)

Parameters

ParameterTypeDescription
x1, x2array_likeInput string arrays to compare. If their shapes differ, they must be broadcastable to a common shape.
outndarray, None, or tuple of ndarray and None, optionalOptional output array where the result is stored. If None, a new array is created.
wherearray_like, optionalBoolean mask specifying which elements to compare. Elements where where=False retain their original value.
castingstr, optionalDefines the casting behavior when comparing strings.
orderstr, optionalMemory layout order of the output array.
dtypedata-type, optionalDefines the data type of the output array.
subokbool, optionalDetermines if subclasses of ndarray are preserved in the output.

Return Value

Returns an array of boolean values indicating where x1 <= x2 element-wise. If both inputs are scalars, a single boolean value is returned.


Examples

1. Comparing Two Scalar Strings

Here, we compare two string values directly.

</>
Copy
import numpy as np

# Define two string scalars
str1 = "apple"
str2 = "banana"

# Compare the strings using less_equal
result = np.strings.less_equal(str1, str2)

# Print the result
print("Is 'apple' <= 'banana'? :", result)

Output:

Is 'apple' <= 'banana'? : True

2. Comparing Arrays of Strings

We compare element-wise in two string arrays.

</>
Copy
import numpy as np

# Define two arrays of strings
arr1 = np.array(["apple", "cherry", "banana"])
arr2 = np.array(["banana", "apple", "cherry"])

# Compare element-wise
result = np.strings.less_equal(arr1, arr2)

# Print the result
print("Array 1:", arr1)
print("Array 2:", arr2)
print("Comparison result:", result)

Output:

Array 1: ['apple' 'cherry' 'banana']
Array 2: ['banana' 'apple' 'cherry']
Comparison result: [ True False  True]

3. Broadcasting a Single String Against an Array

We compare a single string with each element in an array.

</>
Copy
import numpy as np

# Define a single string and an array of strings
single_str = "banana"
str_array = np.array(["apple", "banana", "cherry"])

# Compare the single string with each array element
result = np.strings.less_equal(single_str, str_array)

# Print the result
print("Single String:", single_str)
print("String Array:", str_array)
print("Comparison result:", result)

Output:

Single String: banana
String Array: ['apple' 'banana' 'cherry']
Comparison result: [False  True  True]

4. Using the where Parameter

Using a mask to selectively compare only certain elements.

</>
Copy
import numpy as np

# Define two arrays of strings
arr1 = np.array(["apple", "cherry", "banana"])
arr2 = np.array(["banana", "apple", "cherry"])

# Define a mask (only compare where mask is True)
mask = np.array([True, False, True])

# Compare with the where parameter
result = np.strings.less_equal(arr1, arr2, where=mask)

# Print the result
print("Comparison result with mask:", result)

Output:

Comparison result with mask: [ True False  True]

The comparison is only performed for elements where mask=True. Other values remain unchanged.