NumPy tanh()

The numpy.tanh() function computes the hyperbolic tangent of each element in an input array, element-wise. The hyperbolic tangent function is defined as:

\( \tanh(x) = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{e^x – e^{-x}}{e^x + e^{-x}} \)

Syntax

</>
Copy
numpy.tanh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)

Parameters

ParameterTypeDescription
xarray_likeInput array whose elements are to be transformed using the hyperbolic tangent function.
outndarray, None, or tuple of ndarray and None, optionalOptional output array where the result is stored. If None, a new array is created.
wherearray_like, optionalBoolean mask specifying which elements to compute. Elements where where=False retain their original value.
castingstr, optionalDefines the casting behavior when computing the hyperbolic tangent function.
orderstr, optionalMemory layout order of the output array.
dtypedata-type, optionalDefines the data type of the output array.
subokbool, optionalDetermines if subclasses of ndarray are preserved in the output.

Return Value

Returns an array with the hyperbolic tangent values of the input array elements. If the input is a scalar, a scalar is returned.


Examples

1. Computing Hyperbolic Tangent of a Single Value

Here, we compute the hyperbolic tangent of a single input value.

</>
Copy
import numpy as np

# Define a single value
x = 1.0  

# Compute the hyperbolic tangent
result = np.tanh(x)

# Print the result
print("tanh(1.0):", result)

Output:

tanh(1.0): 0.7615941559557649

2. Computing Hyperbolic Tangent for an Array

We compute the hyperbolic tangent values for multiple numbers using an array.

</>
Copy
import numpy as np

# Define an array of values
values = np.array([-2, -1, 0, 1, 2])

# Compute the hyperbolic tangent of each value
tanh_values = np.tanh(values)

# Print the results
print("Input values:", values)
print("Hyperbolic Tangent values:", tanh_values)

Output:

Input values: [-2 -1  0  1  2]
Hyperbolic Tangent values: [-0.96402758 -0.76159416  0.          0.76159416  0.96402758]

3. Using the out Parameter

Using an output array to store the results instead of creating a new one.

</>
Copy
import numpy as np

# Define an array of input values
values = np.array([-1, 0, 1])

# Create an output array with the same shape
output_array = np.ndarray(shape=values.shape)

# Compute hyperbolic tangent and store the result in output_array
np.tanh(values, out=output_array)

# Print the results
print("Computed tanh values:", output_array)

Output:

Computed tanh values: [-0.76159416  0.          0.76159416]

4. Using the where Parameter

Using a condition to compute the hyperbolic tangent only for selected elements.

</>
Copy
import numpy as np

# Define an array of values
values = np.array([-1, 0, 1])

# Define a mask (compute tanh only where mask is True)
mask = np.array([True, False, True])

# Compute hyperbolic tangent values where mask is True
result = np.tanh(values, where=mask)

# Print the results
print("Computed tanh values with mask:", result)

Output:

Computed tanh values with mask: [-7.61594156e-001  3.33209524e-315  7.61594156e-001]

The hyperbolic tangent values are computed only for elements where mask=True. The other values remain unchanged.