Access Value at specific Row/Column of DataFrame
To access item/value at specific Row/Column of DataFrame in Pandas, use pandas.DataFrame.at attribute. Specify the row and column in square brackets.
In this tutorial, we will learn how to access value at specific Row/Column of DataFrame in Pandas using DataFrame.at attribute.
Syntax
The syntax to access value/item at given row and column in DataFrame is
DataFrame.at[row, column]
where
row
is the index of the item’s row.column
is the column label for the item.
We may read the value at specified row and column, or may set the value at specified row and column.
Example
Read Value at [Row, Column] in DataFrame
In the following program, we take a DataFrame and read the value at second row and 'name'
column.
Example.py
import pandas as pd
df = pd.DataFrame(
{'name': ["apple", "banana", "cherry"], 'quant': [40, 50, 60]})
item = df.at[1, 'name']
print(item)
Output
banana
Update Value at [Row, Column] in DataFrame
In the following program, we take a DataFrame and update the value at second row and 'name'
column to 'mango'
.
Example.py
import pandas as pd
df = pd.DataFrame(
{'name': ["apple", "banana", "cherry"], 'quant': [40, 50, 60]})
df.at[1, 'name'] = "mango"
print(df)
Output
name quant
0 apple 40
1 mango 50
2 cherry 60
Conclusion
In this Pandas Tutorial, we learned how to access item/value at specific Row/Column of DataFrame using DataFrame().at attribute.